Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein.

نویسندگان

  • Ulrike Camenisch
  • Daniel Träutlein
  • Flurina C Clement
  • Jia Fei
  • Alfred Leitenstorfer
  • Elisa Ferrando-May
  • Hanspeter Naegeli
چکیده

Xeroderma pigmentosum group C (XPC) protein initiates the DNA excision repair of helix-distorting base lesions. To understand how this versatile subunit searches for aberrant sites within the vast background of normal genomic DNA, the real-time redistribution of fluorescent fusion constructs was monitored after high-resolution DNA damage induction. Bidirectional truncation analyses disclosed a surprisingly short recognition hotspot, comprising approximately 15% of human XPC, that includes two beta-hairpin domains with a preference for non-hydrogen-bonded bases in double-stranded DNA. However, to detect damaged sites in living cells, these DNA-attractive domains depend on the partially DNA-repulsive action of an adjacent beta-turn extension that promotes the mobility of XPC molecules searching for lesions. The key function of this dynamic interaction surface is shown by a site-directed charge inversion, which results in increased affinity for native DNA, retarded nuclear mobility and diminished repair efficiency. These studies reveal a two-stage discrimination process, whereby XPC protein first deploys a dynamic sensor interface to rapidly interrogate the double helix, thus forming a transient recognition intermediate before the final installation of a more static repair-initiating complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attenuated expression of xeroderma pigmentosum group C is associated with critical events in human bladder cancer carcinogenesis and progression.

Xeroderma pigmentosum group C (XPC) is an important DNA damage recognition protein that binds to damaged DNA at a very early stage during DNA repair. The XPC protein is also involved in DNA damage-induced cell cycle checkpoint regulation and apoptosis. XPC defects are associated with many types of solid tumors. The mechanism of the XPC protein in cancer progression, however, remains unclear. In...

متن کامل

Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair

The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with...

متن کامل

SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair

The xeroderma pigmentosum group C (XPC) protein complex is a key factor that detects DNA damage and initiates nucleotide excision repair (NER) in mammalian cells. Although biochemical and structural studies have elucidated the interaction of XPC with damaged DNA, the mechanism of its regulation in vivo remains to be understood in more details. Here, we show that the XPC protein undergoes modifi...

متن کامل

Dissection of the xeroderma pigmentosum group C protein function by site-directed mutagenesis.

Xeroderma pigmentosum group C (XPC) protein is a sensor of helix-distorting DNA lesions, the function of which is to trigger the global genome repair (GGR) pathway. Previous studies demonstrated that XPC protein operates by detecting the single-stranded character of non-hydrogen-bonded bases opposing lesion sites. This mode of action is supported by structural analyses of the yeast Rad4 homolog...

متن کامل

Overexpression of xeroderma pigmentosum group C decreases the chemotherapeutic sensitivity of colorectal carcinoma cells to cisplatin

Xeroderma pigmentosum group C (XPC) is a DNA-damage-recognition gene active at the early stage of DNA repair. XPC also participates in regulation of cell-cycle checkpoint and DNA-damage-induced apoptosis. In the present study, the expression levels of genes involved in nucleotide excision repair (NER) were assessed in human colorectal cancer (CRC) tissue. This analysis revealed that expression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 28 16  شماره 

صفحات  -

تاریخ انتشار 2009